Name: _____

Row: _____

Math 113H, Section 12 Exam 1 Instructor: David G. Wright 16-18 September 2010

Instructions:

- 1. Work on scratch paper will not be graded.
- 2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- 3. Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, etc. must be simplified for full credit.
- 4. Calculators are not allowed.

For Instructor use only.

#	Possible	Earned	#	Possible	Earned
1.a	6		4	10	
1.b	6		5.a	8	
1.c	6		5.b	8	
1.d	6		5.c	8	
1.e	6		5.d	8	
2	10		5.3	8	
3	10		Total	100	

1. (30%) Consider the region between the curves $y = \sqrt{x-1}$ and $y = \frac{x-1}{2}$.

- (a) Set up an integral for the area of the region bounded by the curves. DO NOT SIMPLIFY. DO NOT EVALUATE.
- (b) Use the Washer Method to set up an integral for the volume when the region is rotated about the x-axis. DO NOT SIMPLIFY. DO NOT EVALUATE.
- (c) Use the Shell Method to set up an integral for the volume when the region is rotated about the y axis. DO NOT SIMPLIFY. DO NOT EVALUATE.
- (d) Set up an integral for the volume when the region is rotated about the line y = 2. DO NOT SIMPLIFY. DO NOT EVALUATE.
- (e) Set up an integral for the volume when the region is rotated about the line x = -1. DO NOT SIMPLIFY. DO NOT EVALUATE.

2. (10%) Use the disk method or the shell method to show that the volume V of a cone with radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$.

3. (10%) A bucket that weighs 4 lb and a rope that weighs 0.2 lb per foot are used to draw water from a well that is 50 ft deep. The bucket is filled with 40 lb of water and is pulled up at a constant speed, but water leaks out of a hole in the bucket at a constant rate so that only half the water reaches the top. Find the work done in pulling the bucket to the top of the well.

4. (10%) A conical tank of radius 4 ft and height 8 ft is full of water of density 62.5 lbs per ft³. Set up an integral that represents the work in foot pounds needed to pump the water to a height 2 ft above the top of the tank.

5. (40%) Evaluate the following integrals. Show your work.

(a)
$$\int (\ln x)^2 dx$$

(b)
$$\int_0^{\pi/4} \cos^2(2x) \, dx$$

(c) $\int t \cos t \, dt$

(d) $\int_0^{\pi/4} \sec^3 \theta \ d\theta$

(e) $\int \tan^2 x \sec^4 x \, dx$